Aprendizado Supervisionado de Redes Bayesianas na Mineração de Dados

Aprendizado Supervisionado de Redes Bayesianas na Mineração de Dados

A seleção de atributos aplicada em problemas de classificação apresentando um novo algoritmo, o MarkovPC

Novas Edições Acadêmicas ( 20.11.2015 )

€ 54,90

Comprar em MoreBooks!

As Redes Bayesianas (RBs) podem ser consideradas como uma forma de representação do conhecimento baseada no raciocínio probabilístico e possuem características que as tornam muito adequadas para tarefas de mineração de dados. O aprendizado automático de RBs e Classificadores Bayesianos (CBs) busca identificar uma RB que represente o relacionamento entre as variáveis de um determinado conjunto de dados, mas sendo um problema NP-completo o espaço de busca se torna muito amplo na maioria das aplicações. Assim, muitos algoritmos exploram formas de redução do espaço de busca para tornar o processo de aprendizado computacionalmente viável. Este livro apresenta um método, o MarkovPC, de aprendizado de CBs que visa exatamente reduzir o espaço de busca durante a indução de um classificador a partir de dados. Para tanto, toma-se como base algoritmos de aprendizado de RB da classe de Independência Condicional e o conceito de Markov Blanket. Resultados mostram que o MarkovPC é capaz de reduzir o esforço computacional do processo de indução de um classificador Bayesiano e mantendo a qualidade do classificador induzido em termos de taxa de classificação correta.

Detalhes do livro:

ISBN-13:

978-613-0-15748-7

ISBN-10:

6130157487

EAN:

9786130157487

Idioma do livro:

Português

Por (autor):

Sebastian David Carvalho de Oliveira Galvao

Números de páginas:

116

Publicado em:

20.11.2015

Categoria:

Informática, IT